
Efficient Cache Attacks on AES, and Countermeasures

Eran Tromer1 2, Dag Arne Osvik3 and Adi Shamir2

1 Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology,

32 Vassar Street, G682, Cambridge, MA 02139
tromer@csail.mit.edu

2 Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel

adi.shamir@weizmann.ac.il
3 Laboratory for Cryptologic Algorithms, Station 14,

École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
dagarne.osvik@epfl.ch

Abstract. We describe several software side-channel attacks based on inter-process leakage through
the state of the CPU’s memory cache. This leakage reveals memory access patterns, which can be used
for cryptanalysis of cryptographic primitives that employ data-dependent table lookups. The attacks
allow an unprivileged process to attack other processes running in parallel on the same processor,
despite partitioning methods such as memory protection, sandboxing and virtualization. Some of
our methods require only the ability to trigger services that perform encryption or MAC using the
unknown key, such as encrypted disk partitions or secure network links. Moreover, we demonstrate
an extremely strong type of attack, which requires knowledge of neither the specific plaintexts nor
ciphertexts, and works by merely monitoring the effect of the cryptographic process on the cache.
We discuss in detail several attacks on AES, and experimentally demonstrate their applicability to
real systems, such as OpenSSL and Linux’s dm-crypt encrypted partitions (in the latter case, the full
key was recovered after just 800 writes to the partition, taking 65 milliseconds). Finally, we discuss
a variety of countermeasures which can be used to mitigate such attacks.

Keywords: side-channel attack, cryptanalysis, memory cache, AES

1 Introduction

1.1 Overview

Many computer systems concurrently execute programs with different privileges, employing vari-
ous partitioning methods to facilitate the desired access control semantics. These methods include
kernel vs. userspace separation, process memory protection, filesystem permissions and chroot,
and various approaches to virtual machines and sandboxes. All of these rely on a model of the
underlying machine to obtain the desired access control semantics. However, this model is often
idealized and does not reflect many intricacies of the actual implementation.

In this paper we show how a low-level implementation detail of modern CPUs, namely the
structure of memory caches, causes subtle indirect interaction between processes running on
the same processor. This leads to cross-process information leakage. In essence, the cache forms a
shared resource which all processes compete for, and it thus affects and is affected by every process.
While the data stored in the cache is protected by virtual memory mechanisms, the metadata

about the contents of the cache, and in particular the memory access patterns of processes using
that cache, are not fully protected.

We describe several methods an attacker can use to learn about the memory access patterns
of another process, e.g., one which performs encryption with an unknown key. These are classified
into methods that affect the state of the cache and then measure the effect on the running time
of the encryption, and methods that investigate the state of the cache after or during encryption.
The latter are found to be particularly effective and noise-resistant.

We demonstrate the cryptanalytic applicability of these methods to the Advanced Encryption
Standard (AES, [39]) by showing a known-plaintext (or known-ciphertext) attack that performs
efficient full key extraction. For example, an implementation of one variant of the attack per-
forms full AES key extraction from the dm-crypt system of Linux using only 800 accesses to an
encrypted file, 65ms of measurements and 3 seconds of analysis; attacking simpler systems, such
as “black-box” OpenSSL library calls, is even faster at 13ms and 300 encryptions.

One variant of our attack has the unusual property of performing key extraction without
knowledge of either the plaintext or the ciphertext. This is a particularly strong form of attack,
which is clearly impossible in a classical cryptanalytic setting. It enables an unprivileged process,
merely by accessing its own memory space, to obtain bits from a secret AES key used by another
process, without any (explicit) communication between the two. This too is demonstrated exper-
imentally, and implementing AES in a way that is impervious to this attack, let alone developing
an efficient generic countermeasure, appears non-trivial.

This paper is organized as follows: Section 2 gives an introduction to memory caches and AES
lookup tables. In Section 3 we describe the basic attack techniques, in the “synchronous” setting
where the attacker can explicitly invoke the cipher on known data. Section 4 introduces even
more powerful “asynchronous” attacks which relax the latter requirement. In Section 5, various
countermeasures are described and analyzed. Section 6 summarizes these results and discusses
their implications.

1.2 Related work

The possibility of cross-process leakage via cache state was first considered in 1992 by Hu [24]
in the context of intentional transmission via covert channels. In 1998, Kelsey et al. [27] men-
tioned the prospect of “attacks based on cache hit ratio in large S-box ciphers”. In 2002, Page
[47] described theoretical attacks on DES via cache misses, assuming an initially empty cache and
the ability to identify cache effects with very high temporal resolution in side-channel traces. He
subsequently proposed several countermeasures for smartcards [48], though most of these require
hardware modifications and are inapplicable or insufficient in our attack scenario. Recently, vari-
ants of this attack (termed “trace-driven” in [48]) were realized by Bertoni et al. [11] and Acıiçmez
and Koç [3][4], using a power side channel of a MIPS microprocessor in an idealized simulation.
By contrast, our attacks operate purely in software, and are hence of wider applicability and
implications; they have also been experimentally demonstrated in real-life scenarios.

In 2002 and subsequently, Tsunoo et al. devised a timing-based attack on MISTY1 [57,58]
and DES [56], exploiting the effects of collisions between the various memory lookups invoked
internally by the cipher (as opposed to the cipher vs. attacker collisions we investigate, which

2

greatly improve the efficiency of an attack). Recently Lauradoux [32] and Canteaut et al. [18]
proposed some countermeasures against these attacks, none of which are satisfactory against our
attacks (see Section 5).

An abridged version of this paper was published in [45], and announced in [44].
Concurrently but independently, Bernstein [10] described attacks on AES that exploit timing

variability due to cache effects. This attack can be seen as a variant of our Evict+Time measure-
ment method (see Section 3.4 and the analysis of Neve et al. [42]), though it is also somewhat
sensitive to the aforementioned collision effects. The main difference is that [10] does not use an
explicit model of the cache and active manipulation, but rather relies only on the existence of some
consistent statistical patterns in the encryption time caused by memory access effects; these pat-
terns are neither controlled nor modeled. The resulting attack is simpler and more portable than
ours, since its implementation is mostly oblivious to the fine (and often unpublished) details of the
targeted CPU and software; indeed, [10] includes the concise C source code of the attack. More-
over, the attack of [10] locally executes only time measurement code on the attacked computer,
whereas our attack code locally executes more elaborate code that also performs (unprivileged)
memory accesses. However, the attack of [10] has several shortcomings. First, it requires reference
measurements of encryption under known key in an identical configuration, and these are often
not readily available (e.g., a user may be able to write data to an encrypted filesystem, but creat-
ing a reference filesystem with a known key is a privileged operation). Second, the attack of [10]
relies on timing the encryption and thus, similarly to our Evict+Time method, seems impractical
on many real systems due to excessively low signal-to-noise ratio; our alternative methods (Sec-
tions 3.5 and 4) address this. Third, even when the attack of [10] works, it requires a much higher
number of analyzed encryptions than our method.4 A subsequent paper of Canteaut et al. [18]
describes a variant of Bernstein’s attack which focuses on internal collisions (following Tsunoo
et al.) and provided a more in-depth experimental analysis;5 its properties and applicability are
similar to Bernstein’s attack.6 See Section 6.5 for subsequent improvements.

Also concurrently with but independently of our work, Percival [50] described a cache-based
attack on RSA for processors with simultaneous multithreading. The measurement method is
similar to one variant of our asynchronous attack (Section 4), but the cryptanalysis has little
in common since the algorithms and time scales involved in RSA vs. AES operations are very
different. Both [10] and [50] contain discussions of countermeasures against the respective attacks,
and some of these are also relevant to our attacks (see Section 5).

Koeune and Quisquater [30] described a timing attack on a “bad implementation” of AES
which uses its algebraic description in a “careless way” (namely, using a conditional branch in

4 In our experiments the attack code of [10] failed to get a signal from dm-crypt even after a 10 hours run, whereas
in the same setup our Prime+Probe (see Section 3.5) performed full key recovery using 65ms of measurements.

5 Canteaut et al. [18] claim that their attack exploits only collision effects due to microarchitectural details (i.e.,
low address bits) and that Bernstein’s attack [10] exploits only cache misses (i.e., higher address bits). However,
experimentally both attacks yield key bits of both types, as can be expected: the analysis method of [10] also
detects collision effects (albeit with lower sensitivity), while the attack setting of [18] inadvertently also triggers
systematic cache misses (e.g., due to the encryption function’s use of stack and buffers).

6 [18] reports a 85% chance of recovering 20 bits using 230 encryptions after a 230 learning phase, even for the
“lightweight” target of OpenSSL AES invocation. In the same setting, our attack reliably recovers the full key
from just 300 encryptions (Section 3.7).

3

the MixColumn operation). That attack is not applicable to common software implementations,
but should be taken into account in regard to certain countermeasures against our attacks (see
Section 5.2).

Leakage of memory access information has also been considered in other contexts, yielding
theoretical [22] and heuristic [63][64] mitigation methods; these are discussed in Section 5.3.

See Section 6.5 for a discussion of additional works following our research.

2 Preliminaries

2.1 Memory and cache structure

Over the past couple of decades, CPU speed (in terms of operations per second) has been bene-
fiting from Moore’s law and growing at rate of roughly 60% per year, while the latency of main
memory has been decreasing at a much slower rate (7%–9% per year).7 Consequentially, a large
gap has developed between the two. Complex multi-level cache architectures are employed to
bridge this gap, but it still shows through during cache misses: on a typical modern processor,
accessing data in the innermost (L1) cache typically requires amortized time on the order of
0.3ns, while accessing main memory may stall computation for 50 to 150ns, i.e., a slowdown of
2–3 orders of magnitude. The cache architectures are optimized to minimize the number of cache
misses for typical access patterns, but can be easily manipulated adversarially; to do so we will
exploit the special structure in the association between main memory and cache memory.

Modern processors use one or more levels of set-associative memory cache. Such a cache
consists of storage cells called cache lines, each consisting of B bytes. The cache is organized into
S cache sets, each containing W cache lines8, so overall the cache contains B · S ·W bytes. The
mapping of memory addresses into the cache is limited as follows. First, the cache holds copies
of aligned blocks of B bytes in main memory (i.e., blocks whose starting address is 0 modulo B),
which we will term memory blocks. When a cache miss occurs, a full memory block is copied into
one of the cache lines, replacing (“evicting”) its previous contents. Second, each memory block
may be cached only in a specific cache set; specifically, the memory block starting at address a
can be cached only in the W cache lines belonging to cache set ba/Bc mod S. See Figure 1. Thus,
the memory blocks are partitioned into S classes, where the blocks in each class contend for the
W cache lines in a single cache set.9

Modern processors have up to 3 levels of memory cache, denoted L1 to L3, with L1 being the
smallest and fastest cache and subsequent levels increasing in size and latency. For simplicity, in
the following we mostly ignore this distinction; one has a choice of which cache to exploit, and
our experimental attacks used both L1 and L2 effects. Additional complications are discussed in
Section 3.6. Typical cache parameters are given in Table 1.

7 This relatively slow reduction in DRAM latency has proven so reliable, and founded in basic technological
hurdles, that it has been proposed by Abadi et al. [1] and Dwork et al. [21] as a basis for proof-of-work protocols.

8 In common terminology, W is called the associativity and the cache is called W -way set associative.
9 CPUs differ in their policy for choosing which cache line inside a set to evict during a cache miss. Our attacks work

for all common algorithms, but as discussed in Section 3.8, knowledge of the policy allows further improvements.

4

S

W WT0

Cache Main memory

Fig. 1. Schematic of a single level of set-associative cache. Each column of memory blocks (right
side) corresponds to S ·B contiguous bytes of memory. Each row of memory blocks is mapped to
the corresponding row in the cache (left side), representing a set of W cache lines. The light gray
blocks represent an AES lookup table in the victim’s memory. The dark gray blocks represent
the attacker’s memory used for the attack, which will normally be at least as big as the size of
the cache.

CPU model Level B (cache line size) S (cache sets) W (associativity) B · S · W (total size)

Athlon 64 / Opteron L1 64B 512 2 64KB
Athlon 64 / Opteron L2 64B 1024 16 1024KB
Pentium 4E L1 64B 32 8 16KB
Pentium 4E L2 128B 1024 8 1024KB
PowerPC 970 L1 128B 128 2 32KB
PowerPC 970 L2 128B 512 8 512KB
UltraSPARC T1 L1 16B 128 4 8KB
UltraSPARC T1 L2 64B 4096 12 3072KB

Table 1. Data cache parameters for popular CPU models

2.2 Memory access in AES implementations

This paper focuses on AES, since its memory access patterns are particularly susceptible to
cryptanalysis (see Section 6.2 for a discussion of other ciphers). The cipher is abstractly defined
by algebraic operations and could, in principle, be directly implemented using just logical and
arithmetic operations.10 However, performance-oriented software implementations on 32-bit (or
higher) processors typically use an alternative formulation based on lookup tables, as prescribed
in the Rijndael specification[19][20]. In the subsequent discussion we assume the following imple-
mentation, which is typically the fastest.11

Several lookup tables are precomputed once by the programmer or during system initialization.
There are 8 such tables, T0, T1, T2, T3 and T

(10)
0 , T

(10)
1 , T

(10)
2 , T

(10)
3 , each containing 256 4-byte

words. The contents of the tables, defined in [20], are inconsequential for most of our attacks.

10 Such an implementation would be immune to our attack, but exhibit low performance. A major reason for the
choice of Rijndael in the AES competition was the high performance of the implementation analyzed here.

11 See Section 5.2 for a discussion of alternative table layouts. A common variant employs 1 or no extra tables for
the last round (instead of 4); most of our attacks analyze only the first few rounds, and are thus unaffected.

5

During key setup, a given 16-byte secret key k = (k0, . . . , k15) is expanded into 10 round
keys12, K(r) for r = 1, . . . , 10. Each round key is divided into 4 words of 4 bytes each: K(r) =
(K(r)

0 ,K
(r)
1 ,K

(r)
2 ,K

(r)
3). The 0-th round key is just the raw key: K(0)

j = (k4j , k4j+1, k4j+2, k4j+3)
for j = 0, 1, 2, 3. The details of the rest of the key expansion are mostly inconsequential.

Given a 16-byte plaintext p = (p0, . . . , p15), encryption proceeds by computing a 16-byte
intermediate state x(r) = (x(r)

0 , . . . , x
(r)
15) at each round r. The initial state x(0) is computed by

x
(0)
i = pi⊕ki (i = 0, . . . , 15). Then, the first 9 rounds are computed by updating the intermediate

state as follows, for r = 0, . . . , 8:

(x(r+1)
0 , x

(r+1)
1 , x

(r+1)
2 , x

(r+1)
3)← T0[x(r)

0]⊕ T1[x(r)
5]⊕ T2[x(r)

10]⊕ T3[x(r)
15]⊕K(r+1)

0

(x(r+1)
4 , x

(r+1)
5 , x

(r+1)
6 , x

(r+1)
7)← T0[x(r)

4]⊕ T1[x(r)
9]⊕ T2[x(r)

14]⊕ T3[x(r)
3]⊕K(r+1)

1

(x(r+1)
8 , x

(r+1)
9 , x

(r+1)
10 , x

(r+1)
11)← T0[x(r)

8]⊕ T1[x(r)
13]⊕ T2[x(r)

2]⊕ T3[x(r)
7]⊕K(r+1)

2

(x(r+1)
12 , x

(r+1)
13 , x

(r+1)
14 , x

(r+1)
15)← T0[x(r)

12]⊕ T1[x(r)
1]⊕ T2[x(r)

6]⊕ T3[x(r)
11]⊕K(r+1)

3

(1)

Finally, to compute the last round (1) is repeated with r = 9, except that T0, . . . , T3 is replaced
by T (10)

0 , . . . , T
(10)
3 . The resulting x(10) is the ciphertext. Compared to the algebraic formulation

of AES, here the lookup tables represent the combination of ShiftRows, MixColumns and
SubBytes operations; the change of lookup tables in the last round is due to the absence of
MixColumns.

2.3 Notation

We treat bytes interchangeably as integers in {0, . . . , 255} and as elements of {0, 1}8 that can
be XORed. Let δ denote the cache line size B divided by the size of each table entry (usually 4
bytes13); on most platforms of interest we have δ = 16. For a byte y and table T`, we will denote
〈y〉 = by/δc and call this the memory block of y in T`. The significance of this notation is as
follows: two bytes y, z fulfill 〈y〉 = 〈z〉 iff, when used as lookup indices into the same table T`,
they would cause access to the same memory block14, i.e., such indices cannot be distinguished
by a single memory access observed at block granularity. For a byte y and table T`, we say that
an AES encryption accesses the memory block of y in T` if, according to the above description of
AES, at some point during that encryption there is some table lookup of T`[z] where 〈z〉 = 〈y〉.

In Section 3 we will show methods for discovering (and taking advantage of the discovery)
whether the encryption code, invoked as a black box, accesses a given memory block. To this end
we define the following predicate: Qk(p, `, y) = 1 iff the AES encryption of the plaintext p under
the encryption key k accesses the memory block of index y in T` at least once throughout the 10
rounds.
12 We consider AES with 128-bit keys. The attacks can be adapted to longer keys.
13 One exception is OpenSSL 0.9.7g on x86-64, which uses 8-byte table entries. The reduced δ improves our attacks.
14 We assume that the tables are aligned on memory block boundaries, which is usually the case. Non-aligned tables

would benefit our attacks by leaking an extra bit (or more) per key byte in the first round. We also assume for
simplicity that all tables are mapped into distinct cache sets; this holds with high probability on many systems
(and our practical attacks can handle some exceptions).

6

Also in Section 3, our measurement procedures will sample a measurement score from a dis-
tribution Mk(p, `, y) over R. The exact definition of Mk(p, `, y) will vary, but it will approximate
Qk(p, `, y) in the following rough sense: for a large fraction of the keys k, all15 tables ` and a
large fraction of the indices x, for random plaintexts and measurement noise, the expectation of
Mk(p, `, y) is larger when Qk(p, `, y) = 1 than when Qk(p, `, y) = 0.

3 Synchronous known-data attacks

3.1 Overview

Our first family of attacks, termed synchronous attacks, is applicable in scenarios where either the
plaintext or ciphertext is known and the attacker can operate synchronously with the encryption
on the same processor, by using (or eavesdropping upon) some interface that triggers encryption
under an unknown key. For example, a Virtual Private Network (VPN) may allow an unprivileged
user to send data packets through a secure channel which uses the same secret key to encrypt all
packets. This lets the user trigger encryption of plaintexts that are mostly known (up to some
uncertainties in the packet headers), and our attack would thus, under some circumstances, enable
any such user to discover the key used by the VPN to protect the packets of other users. As another
example, consider the Linux dm-crypt and cryptoloop services. These allow the administrator
to create a virtual device which provides encrypted storage on an underlying physical device,
and typically a normal filesystem is mounted on top of the virtual device. If a user has write
permissions to any file on that filesystem, he can use it to trigger encryptions of known plaintext,
and using our attack he is subsequently able to discover the universal encryption key used for
the underlying device. We have experimentally demonstrated the latter attack, and showed it to
reliably extract the full AES key using about 65ms of measurements (involving just 800 write
operations) followed by 3 seconds of analysis. Note that, unlike classical known-plaintext attacks,
in this scenario there is no access to the corresponding ciphertexts.

The attack consists of two stages. In the on-line stage, we obtain a set of random samples,
each consisting of a known plaintext and the memory-access side-channel information gleaned
during the encryption of that plaintext. This data is cryptanalyzed in an off-line stage, through
hypothesis testing: we guess small parts of the key, use the guess to predict some memory accesses,
and check whether the predictions are consistent with the collected data. In the following we first
describe the cryptanalysis in a simplified form by assuming access to an ideal predicate Q that
reveals which memory addresses were accessed by individual invocations of the cipher. We then
adapt the attack to the real setting of noisy measurement M that approximate Q, show two
practical methods for obtaining these measurements, report experimental results and outline
possible variants and extensions.

3.2 One-round attack

Our simplest synchronous attack exploits the fact that in the first round, the accessed table
indices are simply x(0)

i = pi⊕ ki for all i = 0, . . . , 15. Thus, given knowledge of the plaintext byte
15 This will be relaxed in Section 3.7.

7

pi, any information on the accessed index x(0)
i directly translates to information on key byte ki.

The basic attack, in idealized form, is as follows.
Suppose that we obtain samples of the ideal predicate Qk(p, `, y) for some table `, arbitrary

table indices y and known but random plaintexts p. Let ki be a key byte such that the first
encryption round performs the access “T`[x

(0)
i]” in (1), i.e., such that i ≡ ` (mod 4). Then we

can discover the partial information 〈ki〉 about ki, by testing candidate values k̃i and checking
them the following way. Consider the samples that fulfill 〈y〉 = 〈pi ⊕ k̃i〉. These samples will
be said to be useful for k̃i, and we can reason about them as follows. If we correctly guessed
〈ki〉 = 〈k̃i〉 then Qk(p, `, y) = 1 for useful samples, since the table lookup “T`[x

(0)
i]” in (1) will

certainly access the memory block of y in T`. Conversely, if 〈ki〉 6= 〈k̃i〉 then we are assured that
“T`[x

(0)
i]” will not access the memory block of y during the first round; however, during the full

encryption process there is a total of 36 accesses to T` (4 in each of the first 9 AES rounds). The
remaining 35 accesses are affected also by other plaintext bytes, so heuristically the probability
that the encryption will not access that memory block in any round is (1 − δ/256)35 (assuming
sufficiently random plaintexts and avalanche effect). By definition, that is also the probability of
Qk(p, `, y) = 0, and in the common case δ = 16 it is approximately 0.104.

Thus, after receiving a few dozen useful samples we can identify a correct 〈k̃i〉 — namely,
the one for which Qk(p, `, y) = 1 whenever 〈y〉 = 〈pi ⊕ k̃i〉. Applying this test to each key byte
ki separately, we can thus determine the top log2(256/δ) = 4 bits of every key byte ki (when
δ = 16), i.e., half of the AES key. Note that this is the maximal amount of information that can
be extracted from the memory lookups of the first round, since they are independent and each
access can be distinguished only up to the size of a memory block.

In reality, we do not have the luxury of the ideal predicate, and have to deal with measurement
score distributions Mk(p, `, y) that are correlated with the ideal predicate but contain a lot of
(possibly structured) noise. For example, we will see that Mk(p, `, y) is often correlated with
the ideal Qk(p, `, y) for some ` but is uncorrelated for others (see Figure 5). We thus proceed
by averaging over many samples. As above, we concentrate on a specific key byte ki and a
corresponding table `. Our measurement will yield samples of the form (p, y,m) consisting of
arbitrary table indices y, random plaintexts p, and measurement scores m drawn from Mk(p, `, y).
For a candidate key value k̃i we define the candidate score of k̃i as the expected value of m over
the samples useful to k̃i (i.e., conditioned on y = pi ⊕ k̃i). We estimate the candidate score by
taking the average of m over the samples useful for k̃i. Since Mk(p, `, y) approximates Qk(p, `, y),
the candidate score should be noticeably higher when 〈k̃i〉 = 〈ki〉 than otherwise, allowing us to
identify the value of ki up to a memory block.

Indeed, on a variety of systems we have seen this attack reliably obtaining the top nibble of
every key byte. Figure 2 shows the candidate scores in one of these experiments (see Sections 3.5
and 3.7 for details); the δ = 16 key byte candidates k̃i fulfilling 〈k̃i〉 = 〈ki〉 are easily distinguished.

3.3 Two-round attack

The above attack narrows each key byte down to one of δ possibilities, but the table lookups in the
first AES round can not reveal further information. For the common case δ = 16, the key has 64
remaining unknown bits — still too much for exhaustive search. We thus proceed to analyze the

8

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

 0 2 4 6 8 10 12 14 16

Fig. 2. Candidate scores for a synchronous attack using Prime+Probe measurements (see Sec-
tion 3.5), analyzing a dm-crypt encrypted filesystem on Linux 2.6.11 running on an Athlon 64.
Left subfigure: after analysis of 30,000 triggered encryptions. The horizontal axis is k̃5 = p5 ⊕ y,
and the vertical axis is the average measurement score over the samples fulfilling y = p5 ⊕ k̃5 (in
units of clock cycles).
Right subfigure: after just 800 triggered encryptions, with the horizontal axis condensed to 〈k̃5〉.
The encryption function always accesses 〈k5⊕ p5〉, and thus the high nibble of k5 = 0x50 is easily
gleaned from the high points in either plot.

2nd AES round, exploiting the non-linear mixing in the cipher to reveal additional information.
Specifically, we exploit the following equations, easily derived from the Rijndael specification [20],
which give the indices used in four of the table lookups in the 2nd round:16

x
(1)
2 = s(p0 ⊕ k0)⊕ s(p5 ⊕ k5)⊕ 2 • s(p10 ⊕ k10)⊕ 3 • s(p15 ⊕ k15)⊕ s(k15)⊕ k2 (2)

x
(1)
5 = s(p4 ⊕ k4)⊕ 2 • s(p9 ⊕ k9)⊕ 3 • s(p14 ⊕ k14)⊕ s(p3 ⊕ k3)⊕ s(k14)⊕ k1 ⊕ k5

x
(1)
8 = 2 • (p8 ⊕ k8)⊕ 3 • s(p13 ⊕ k13)⊕ s(p2 ⊕ k2)⊕ s(p7 ⊕ k7)⊕ s(k13)⊕ k0 ⊕ k4 ⊕ k8 ⊕ 1

x
(1)
15 = 3 • s(p12 ⊕ k12)⊕ s(p1 ⊕ k1)⊕ s(p6 ⊕ k6)⊕ 2 • s(p11 ⊕ k11)⊕ s(k12)⊕ k15 ⊕ k3 ⊕ k7 ⊕ k11

Here, s(·) denotes the Rijndael S-box function and • denotes multiplication over GF(256).17

Consider, for example, equation (2) above, and suppose that we obtain samples of the ideal
predicate Qk(p, `, y) for table ` = 2, arbitrary table indices y and known but random plaintexts
p. We already know 〈k0〉, 〈k5〉, 〈k10〉, 〈k15〉 and 〈k2〉 from attacking the first round, and we also
know the plaintext. The unknown low bits of k2 (i.e., k2 mod δ), affect only the low bits of x(1)

2 ,
(i.e., x(1)

2 mod δ), and these do not affect which memory block is accessed by “T2[x(1)
2]”. Thus, the

only unknown bits affecting the memory block accessed by “T2[x(1)
2]” in (1) are the lower log2 δ

bits of k0, k5, k10 and k15. This gives a total of δ4 (i.e., 216 for δ = 24) possibilities for candidate
values k̃0, k̃5, k̃10, k̃15, which can be easily enumerated. To complete the recovery of these four key
bytes, we can identify the correct candidate as follows.

Identification of a correct guess is done by a generalization of the hypothesis-testing method
used for the one-round attack. For each candidate guess, and each sample, Qk(p, `, y) we evaluate

16 These four equations are special in that they involve just 4 unknown quantities, as shown below.
17 The only property of these functions that we exploit is the fact that s(·), 2 • s(·) and 3 • s(·) are “random-

looking” in a sense specified below; this is needed for the analysis of the attack’s efficiency. The actual attack
implementation can be done in terms of S-box lookup tables.

9

(2) using the candidates k̃0, k̃5, k̃10, k̃15 while fixing the unknown low bits of k2 to an arbitrary
value. We obtain a predicted index x̃(1)

2 . If 〈y〉 = 〈x̃(1)
2 〉 then we say that this sample is useful for

this candidate, and reason as follows.
If the guess was correct then 〈y〉 = 〈x̃(1)

2 〉 = 〈x(1)
2 〉 and thus “T2[x(1)

2]” certainly causes an
access to the memory block of y in T2, whence Qk(p, `, y) = 1 by definition. Otherwise we have
ki 6= k̃i for some i ∈ {0, 5, 10, 15} and thus

x
(1)
2 ⊕ x̃

(1)
2 = c • s(pi ⊕ ki) ⊕ c • s(pi ⊕ k̃i) ⊕ · · ·

for some c ∈ {1, 2, 3}, and since p is random the remaining terms are independent of the first
two. But for these specific functions the above is distributed close to uniformly. Specifically, it is
readily computationally verified, from the definition of AES [20], that the following differential
property (cf. [13]) holds: for any ki 6= k̃i, c ∈ {1, 2, 3}, δ ≥ 4 and z ∈ {0, . . . , 256/δ} we always
have

Pr
p

[〈c • s(pi ⊕ ki) ⊕ c • s(pi ⊕ k̃i)〉 6= z] > 1− (1− δ/256)3 .

Thus, the probability that “T2[x(1)
2]” in (1) does not cause an access to the memory block of

y in T2 is at least (1 − δ/256)3, and each of the other 35 accesses to T2 performed during the
encryption will access the memory block of y in T2 with probability δ/256. Hence, Qk(p, `, y) = 0
with probability greater than (1− δ/256)3+35.

We see that each sample eliminates, on average, a (δ/256) · (1 − δ/256)38-fraction of the
candidates — this is the probability, for a wrong candidate, that a random sample is useful for
that candidate (i.e., yields a testable prediction) and moreover eliminates that candidate (by
failing the prediction). Thus, to eliminate all the wrong candidates out of the δ4, we need about
log δ−4/ log(1− δ/256 · (1− δ/256)38) samples, i.e., about 2056 samples when δ = 16. Note that
with some of our measurement methods the attack requires only a few hundred encryptions, since
each encryption can provide samples for multiple y.

Similarly, each of the other three equations above lets us guess the low bits of four distinct
key bytes, so taken together they reveal the full key. While we cannot reuse samples between
equations since they refer to different tables `, we can reuse samples between the analysis of the
first and second round. Thus, if we had access to the ideal predicate Q we would need a total of
about 8220 encryptions of random plaintexts, and an analysis complexity of 4 · 216 · 2056 ≈ 229

simple tests, to extract the full AES key.
In reality we get only measurement scores from the distributions Mk(p, `, y) that approximate

the ideal predicate Qk(p, `, y). Similarly to the one-round attack, we proceed by computing, for
each candidate k̃i, a candidate score obtained by averaging the measurement scores of all samples
useful to k̃i. We then pick the k̃i having the largest measurement score. The number of samples
required to reliably obtain all key bytes by this method is, in some experimentally verified settings,
only about 7 times larger than the ideal (see Section 3.7).

3.4 Measurement via Evict+Time

One method for extracting measurement scores is to manipulate the state of the cache before each
encryption, and observe the execution time of the subsequent encryption. Recall that we assume

10

(a)

(b)

(c)

(d)

(e)

Fig. 3. Schematics of cache states, in the notation of Figure 1. States (a)-(c) depict Evict+Time
and (d)-(e) depict Prime+Probe.

the ability to trigger an encryption and know when it has begun and ended. We also assume
knowledge of the memory address of each table T`, and hence of the cache sets to which it is
mapped.18 We denote these (virtual) memory addresses by V (T`). In a chosen-plaintext setting,
the measurement routine proceeds as follows given a table `, index y into ` and plaintext p:

(a) Trigger an encryption of p.
(b) (evict) Access some W memory addresses, at least B bytes apart, that are all congruent to

V (T`) + y ·B/δ modulo S ·B.
(c) (time) Trigger a second encryption of p and time it.19 This is the measurement score.

The rationale for this procedure is as follows. Step (a) makes it highly likely that all table memory
blocks accessed during the encryption of p are cached20; this is illustrated in Figure 3(a). Step (b)
then accesses memory blocks, in the attacker’s own memory space, that happen to be mapped
to the same cache set as the memory block of y in T`. Since it is accessing W such blocks in a
cache with associativity W , we expect these blocks to completely replace the prior contents of the
cache. Specifically, the memory block of index y in the encryption table T` is now not in cache;
see Figure 3(b). When we time the duration of the encryption in (c), there are two possibilities.
If Qk(p, `, y) = 1, that is if the encryption of the plaintext p under the unknown encryption key
k accesses the memory block of index y in T`, then this memory block will have to be re-fetched
from memory into the cache, leading to Figure 3(c). This fetching will slow down the encryption.
Conversely, if Qk(p, `, y) = 0 then this memory fetch will not occur. Thus, all other things being
equal, the expected encryption time is larger when Qk(p, `, y) = 1. The gap is on the order of the
timing difference between a cache hit and a cache miss.

Figure 4 demonstrates experimental results. The bright diagonal corresponds to samples where
〈y〉 ⊕ 〈p0〉 = 〈k0〉 = 0, for which the encryption in step (c) always suffers a cache miss.

This measurement method is easily extended to a case where the attacker can trigger encryp-
tion with plaintexts that are known but not chosen (e.g., by sending network packets to which an
uncontrolled but guessable header is added). This is done by replacing step (a) above with one

18 Also, as before, the cache sets of all tables are assumed to be distinct. See Section 3.6 for a discussion of possible
complications and their resolution.

19 To obtain high-resolution timing we use the CPU cycle counter (e.g., on x86 the RDTSC instruction returns the
number of clock cycles since the last CPU reset).

20 Unless the triggered encryption code has excessive internal cache contention, or an external process interfered.

11

(a)

 0
 16
 32
 48
 64
 80
 96

 112
 128
 144
 160
 176
 192
 208
 224
 240
 256

 0 16 32 48 64 (b)

 0
 16
 32
 48
 64
 80
 96

 112
 128
 144
 160
 176
 192
 208
 224
 240
 256

 0 16 32 48 64

Fig. 4. Timings (lighter is slower) in Evict+Time measurements on a 2GHz Athlon 64, after
10,000 samples, attacking a procedure that executes an encryption using OpenSSL 0.9.8. The
horizontal axis is the evicted cache set (i.e., 〈y〉 plus an offset due to the table’s location) and the
vertical axis is p0 (left) or p5 (right). The patterns of bright areas reveal high nibble values of 0
and 5 for the corresponding key byte values, which are XORed with p0.

that simply triggers encryptions of arbitrary plaintexts in order to cause all table elements to be
loaded into cache. Then the measurement and its analysis proceed as before.

The weakness of this measurement method is that, since it relies on timing the triggered
encryption operation, it is very sensitive to variations in the operation. In particular, triggering
the encryption (e.g., through a kernel system call) typically executes additional code, and thus the
timing may include considerable noise due to sources such as instruction scheduling, conditional
branches, page table misses, and other sources of cache contention. Indeed, using this measurement
method we were able to extract full AES keys from an artificial service doing AES encryptions
using OpenSSL library calls21, but not from more typical “heavyweight” services. For the latter,
we invoked the alternative measurement method described in the next section.

3.5 Measurement via Prime+Probe

This measurement method tries to discover the set of memory blocks read by the encryption
a posteriori, by examining the state of the cache after encryption. This method proceeds as follows.
The attacker allocates a contiguous byte array A[0, . . . , S ·W ·B−1], with start address congruent
modulo S ·B to the start address of T0.22 Then, given a plaintext p, it obtains measurement scores
for all tables ` and all indices y and does so using a single encryption:

(a) (prime) Read a value from every memory block in A.
(b) Trigger an encryption of p.
(c) (probe) For every table ` = 0, . . . 3 and index y = 0, δ, 2δ, . . . , 256− δ:

- Read the W memory addresses A[1024`+ 4y + tSB] for t = 0, . . . ,W − 1. The total time
it takes to perform these W memory accesses is the measurement score for ` and y, i.e.,
our sample of Mk(p, `, y).

21 For this artificial scenario, [10] also demonstrated key extraction.
22 For simplicity, here we assume this address is known, and that T0, T1, T2, T3 are contiguous.

12

 0
 16
 32
 48
 64
 80
 96

 112
 128
 144
 160
 176
 192
 208
 224
 240
 256

 231 247 263 279 295 311

 0
 16
 32
 48
 64
 80
 96

 112
 128
 144
 160
 176
 192
 208
 224
 240
 256

 231 247 263 279 295 311

Fig. 5. Prime+Probe attack using 30,000 encryption calls on a 2GHz Athlon 64, attacking Linux
2.6.11 dm-crypt. The horizontal axis is the evicted cache set (i.e., 〈y〉 plus an offset due to the
table’s location) and the vertical axis is p0. Left: raw timings (lighter is slower). Right: after
subtraction of the average timing of each cache set (i.e., column). The bright diagonal reveals the
high nibble of p0 = 0x00.

Step (a) completely fills the cache with the attacker’s data; see Figure 3(d). The encryption
in step (b) causes partial eviction; see Figure 3(e). Step (c) checks, for each cache set, whether
the attacker’s data is still present after the encryption: cache sets that were accessed by the
encryption in step (b) will incur cache misses in step (c), but cache sets that were untouched by
the encryption will not, and thus induce a timing difference.

Crucially, the attacker is timing a simple operation performed by itself, as opposed to a
complex encryption service with various unknown overheads executed by something else (as in
the Evict+Time approach); this is considerably less sensitive to timing variance, and oblivious
to time randomization or canonization (which are frequently proposed countermeasures against
timing attacks; see Section 5). Another benefit lies in inspecting all cache sets in one go after each
encryption, so that each encryption effectively yields 4 · 256/δ samples of measurement score,
rather than a single sample.

An example of the measurement scores obtained by this method, for a real cryptographic
system, are shown in Figure 5. Note that to obtain a visible signal it is necessary to normalize
the measurement scores by subtracting, from each sample, the average timing of its cache set.
This is because different cache sets are affected differently by auxiliary memory accesses (e.g.,
variables on the stack and I/O buffers) during the system call. These extra accesses depend on
the inspected cache set but are nearly independent of the plaintext byte; thus they affect each
column uniformly and can be subtracted away. Major interruptions, such as context switches to
other processes, are filtered out by excluding excessively long time measurements.

3.6 Practical complications

Above we have ignored several potential complications. One of these is that the attacker does
not know where the victim’s lookup tables reside in memory. It may be hard to tell in advance,
or it might be randomized by the victim.23 However, the attacker usually does know the layout

23 For example, recent Linux kernels randomize memory offsets.

13

 0
 16
 32
 48
 64
 80
 96

 112
 128
 144
 160
 176
 192
 208
 224
 240
 256

 231 247 263 279 295 311

 0
 16
 32
 48
 64
 80
 96

 112
 128
 144
 160
 176
 192
 208
 224
 240
 256

 231 247 263 279 295 311

Fig. 6. Scores (lighter is higher) for combinations of key byte candidate (vertical axis) and table
offset candidate (horizontal axis). The correct combinations are clearly identified as the bright
spots at the head of the Sierpinski-like triangle (which is row-permuted on the right). Note the
correct relative offsets of tables T0 (left) and T1 (right). This is the same dataset as in Figure 5.

t 0 t 1 t 2 t 3

Fig. 7. Priming and probing using pointer chasing in doubly-linked list spanning cache lines.
Each cache line is divided into several fields: a pointer to the next and previous cache line in the
same set, a pointer to the next set, and time measurement ti.

(up to unknown global offset) of the victim’s lookup tables, and this enables the following simple
procedure: try each possible table offset in turn, and apply the one-round attack assuming this
offset. Then pick the offset that gave the maximal candidate score. In our experiments this method
reliably finds the offset even on a real, noisy system, e.g., a standard Linux distribution running
its default background tasks. (see Figure 6). Moreover, when the machine is mostly idle, it suffices
to simply look for a frequently-accessed range of memory of the right size (see Figure 8).

A naive implementation of the prime and probe steps (i.e., scanning the memory buffer in fixed
strides) gives poor results due to two optimizations implemented in modern CPUs: reordering
of memory accesses, and automatic read-ahead of memory by the “hardware prefetcher”. Our
attack code works around both disruptions by using the following “pointer chasing” technique.
During initialization, the attacker’s memory is organized into a linked list (optionally, randomly
permuted); later, priming and probing are done by traversing this list (see Figure 7). To minimize
cache thrashing (self-eviction), we use a doubly-linked list and traverse it forward for priming but
backward for probing. Moreover, to avoid “polluting” its own samples, the probe code stores each
obtained sample into the same cache set it has just finished measuring. On some platforms one
can improve the timing gap by using writes instead of reads, or more than W reads.

14

The aforementioned prime and probe code is the main time-critical and machine-specific part
of the attack, and was tailored by hand to the CPU at hand. The measurement obtained by this
code can be read and analyzed at one’s leisure (in our case, using C and Perl).

Another complication is the distinction between virtual and physical memory addresses. The
mapping between the two is done in terms of full memory pages (i.e., aligned ranges of addresses).
These can be of different sizes, even on a single system, but are usually large enough to contain all
the tables used in the first 9 AES rounds. In the above descriptions, and in some of our attacks,
we used the knowledge of both virtual and physical addresses of the victim’s tables. Sometimes
this is available (e.g., when the attacker and victim use the same shared library); it is also not
a concern when the cache uses indexing by virtual address. When attacking a physically indexed
cache, the attacker can run a quick preprocessing stage to gain the necessary knowledge about
the mapping from virtual to physical addresses, by analysis of cache collisions between pages.
Some operating systems perform page coloring [29], which makes this even easier. Alternatively,
in both measurement methods, the attacker can increase the number of pages accessed to well
above the cache associativity, thereby making it likely that the correct pages are hit; we have
verified experimentally that this simple method works, albeit at a large cost in measurement time
(a factor of roughly 300).

3.7 Experimental results

We have tested the synchronous attacks against AES in various settings. To have an initial “clean”
testing environment for our attack code, we started out using OpenSSL library calls as black-box
functions, pretending we have no access to the key. In this setting, and with full knowledge of the
relevant virtual and physical address mappings, using Prime+Probe measurements we recover
the full 128-bit AES key after only 300 encryptions on Athlon 64, and after 16,000 encryptions
on Pentium 4E.24 In the same setting, but without any knowledge about address mappings (and
without any attempt to discover it systematically) we still recover the full key on Athlon 64 after
8,000 encryptions.

We then proceeded to test the attacks on a real-life encrypted filesystem. We set up a Linux
dm-crypt device, which is a virtual device that encrypts all data at the sector level. The encrypted
data is saved in an underlying storage device (here, a loopback device connected to a regular file).
On top of the dm-crypt device, we created and mounted an ordinary ext2 filesystem. The dm-
crypt device was configured to use a 128-bit AES in ECB mode.25 We triggered encryptions by
performing writes to an ordinary file inside that file system, after opening it in O_DIRECT mode;
each write consisted of a random 16-byte string repeated 32 times. Running this on the Athlon
64 with knowledge about address mappings, we succeeded in extracting the full key after just
800 write operations done in 65ms (including the analysis of the cache state after each write),

24 The Athlon 64 processor yielded very stable timings, whereas the Pentium 4E timings exhibited considerable
variance (presumably, due to some undocumented internal state).

25 Our tests used ECB mode in order to have, for each disk block encryption, identical known plaintexts in all
AES invocations. In the recommended mode, namely CBC, the synchronous attack is less efficient since there is
a lower probability that a given memory block in the S-box tables will remain unaccessed throughout the disk
block encryption. It may still be feasible, e.g., if the tables are not aligned to memory blocks.

15

followed by 3 seconds of off-line analysis. Data from two analysis stages for this kind of attack
are shown in Figures 5 and 6 (the figures depict a larger number of samples, in order to make the
results evident not only to sensitive statistical tests but even to cursory visual inspection).

The Evict+Time measurements (Figure 4) are noisier, as expected, but still allow us to recover
the secret key using about 500,000 samples when attacking OpenSSL on Athlon 64. Gathering the
data takes about half a minute of continuous measurement, more than three orders of magnitude
slower than the attacks based on Prime+Probe.

3.8 Variants and extensions

There are many possible extensions to the basic techniques described above. The following are a
few notable examples.

Known-ciphertext attacks. So far we have discussed known-plaintext attacks. All of these
techniques can be applied analogously in known-ciphertext setting. In fact, for AES implementa-
tions of the form given in Section 2.2, known-ciphertext attacks are more efficient than known-
plaintext ones: the last round uses a dedicated set of tables, which eliminates the noise due to
other rounds (assuming the two sets of tables map to disjoint subsets of the cache). Moreover,
the last round has non-linearity but no MixColumn operation, so the key can be extracted byte-
by-byte without analyzing additional rounds. Indeed, this was demonstrated by [41] (subsequent
to [44]); see Section 6.5. Since the round subkey derivation process in AES is reversible, recovering
the last round’s subkey yields the full key.

Also, even in the case of a known-plaintext attack, the final guess of the key can be efficiently
verified by checking the resulting predictions for the lookups in the last round.

Note that in some scenarios, like the attacker having access to an encrypted partition, the
ciphertext may not be available.

Attacking AES decryption. Since AES decryption is very similar to encryption, all of our
attacks can be applied to the decryption code just as easily. Moreover, the attacks are also
applicable when AES is used in MAC mode, as long as either the input or output of some AES
invocations is known.

Reducing analysis complexity. In the two-round attack, we can guess byte differences ∆̃ =
ki ⊕ kj and consider plaintexts such that pi ⊕ pj = ∆̃, in order to cancel out pairs of terms
S(ki ⊕ pi) ⊕ S(kj ⊕ pj) in (2). This reduces the complexity of analysis (we guess just ∆̃ instead
of both k̃i and k̃j), at the cost of using more measurements.

Redundant analysis. To verify the results of the second-round analysis, or in case some of the
tables cannot be analyzed due to excessive noise, we can use the other 12 lookups in the second
round, or even analyze the third round, by plugging in partial information obtained from good
tables.

Sub-cacheline leakage. Typically, loading a memory block into a cache line requires several
memory transfer cycles due to the limited bandwidth of the memory interface. Consequently, on
some processors the load latency depends on the offset of the address within the loaded memory
block. Such variability can leak information on memory accesses with resolution better than δ,

16

hence an analysis of the first round via Evict+Time can yield additional key bits. Cache bank
collisions (e.g., in Athlon 64 processors) likewise cause timing to be affected by low address bits.

Detection of eviction depth. The Prime+Probe measurement can be extended to reveal
not only whether a given cache set was accessed, but also the number of evictions from that
cache set (i.e., the number of accessed distinct memory blocks mapped to that cache set). This
means that the accesses of interest, such as S-box lookups, can be detected even when “masked”
by accesses to the same cache set, whether accidental (e.g., to the stack or I/O buffers; see
Figure 5) or intentional (as an attempted countermeasure). For example, in the case of a set-
associative cache employing an LRU eviction algorithm, each distinct memory block accessed by
the victim will evict exactly one of the attacker’s memory blocks from the corresponding cache
set (if any are left); consequentially, the Probe time for a given cache set is roughly linear in the
number of distinct accessed memory blocks mapped to that set (for up to W such blocks). For
the pseudo-LRU (also called tree-LRU) eviction algorithm, this leakage is slightly weaker: the
number of detected evictions equals the number of cache set accesses done by the victim for up
to log2(W) + 1 such accesses26; beyond this bound, the two values are still highly correlated if
accesses are sufficiently random. The attacker can also find the exact number of evictions from
a pseudo-LRU cache by repeating the measurement experiment multiple times using different
orderings of probed addresses.

Remote attacks. We believe this attack can be converted into a remote attack on a network-
triggerable cryptographic network process (e.g., IPsec [28] or OpenVPN [43]).27 The cache ma-
nipulation can be done remotely, for example, by triggering accesses to the state tables employed
by the host’s TCP stack, stateful firewall or VPN software. These state tables reside in memory
and are accessed whenever a packet belonging to the respective network connection is seen. The
attacker can thus probe different cache sets by sending packets along different network connec-
tions, and also measure access times by sending packets that trigger a response packet (e.g., an
acknowledgment or error). If a large number of new connections is opened simultaneously, the
memory addresses of the slots assigned to these connections in the state tables will be strongly
related (e.g., contiguous or nearly so), and can be further ascertained by finding slots that are
mapped to the same cache set (by sending appropriate probe packets and checking the response
time). Once the mapping of the state table slots to cache sets is established, all of the aforemen-
tioned attacks can be carried out; however, the signal-to-noise (and thus, the efficiency) of this
technique remains to be evaluated.

4 Asynchronous attacks

4.1 Overview

While the synchronous attack presented in the previous section leads to very efficient key re-
covery, it is limited to scenarios where the attacker has some interaction with the encryption

26 In a W -associative cache with binary-tree pseudo-LRU, the victim evicts its own data using log2(W)+2 accesses,
but no fewer, assuming that the cache initially does not contain any data from the victim’s memory space.

27 This is ruled out in [18], though no justification is given.

17

code which allows him to obtain known plaintexts and execute code just before and just after
the encryption. We now proceed to describe a class of attacks that eliminate these prerequisites.
The attacker will execute his own program on the same processor as the encryption program,
but without any explicit interaction such as inter-process communication or I/O, and the only
knowledge assumed is about the non-uniform distribution of the plaintexts or ciphertexts (rather
than their specific values). Essentially, the attacker will ascertain patterns of memory access per-
formed by other processes just by performing and measuring accesses to its own memory. This
attack is more constrained in the hardware and software platforms to which it applies, but it
is very effective on certain platforms, such as the increasingly popular CPU architectures which
implement simultaneous multithreading.

4.2 One-Round Attack

The basic form of this attack works by obtaining a statistical profile of the frequency of cache set
accesses. The means of obtaining this will be discussed in the next section, but for now we assume
that for each table T` and each memory block n = 0, . . . , 256/δ − 1 we have a frequency score
value F`(n) ∈ R, that is strongly correlated with the relative frequencies of the victim’s table
lookups.28 For a simple but common case, suppose that the attacker process is performing AES
encryption of English text, in which most bytes have their high nibble set to 6 (i.e., lowercase
letters a through o). Since the actual table lookups performed in round 1 of AES are of the form
“T`[x

(0)
i]” where x(0)

i = pi ⊕ ki, the corresponding frequency scores F`(n) will have particularly
large values when n = 6⊕ 〈ki〉 (assuming δ = 16). Thus, just by finding the n for which F`(n) is
large and XORing them with the constant 6, we get the high nibbles 〈ki〉.

Note, however, that we cannot distinguish the order of different memory accesses to the same
table, and thus cannot distinguish between key bytes ki involved in the first-round lookup to
the same table `. There are four such key bytes per table (for example, k0, k5, k10, k15 affect
T0; see Section 2.2). Thus, when the four high key nibbles 〈ki〉 affecting each table are distinct
(which happens with probability ((16!/12!)/164)4 ≈ 0.2), the above reveals the top nibbles of
all key bytes but only up to four disjoint permutations of 4 elements each. Overall this gives
64 − log2(4!4) ≈ 45.66 bits of key information, somewhat less than the one-round synchronous
attack. When the high key nibbles are not necessarily disjoint we get more information, but the
analysis of the signal is somewhat more complex.

More generally, suppose the attacker knows the first-order statistics of the plaintext; these can
usually be determined just from the type of data being encrypted (e.g., English text, numerical
data in decimal notation, machine code or database records).29 Specifically, suppose that the
attacker knows R(n) = Pr[〈pi〉 = n] for n = 0, . . . , (256/δ − 1) , i.e., the histogram of the
plaintext bytes truncated into blocks of size δ (where the probability is over all plaintext blocks
and all bytes i inside each block). Then the partial key values 〈ki〉 can be identified by finding
those that yield maximal correlation between F`(n) and R(n⊕ 〈ki〉).
28 Roughly, F`(n) is the average time (cycle count) it takes the attacker to access memory mapped to the same

cache set as T`[n].
29 Note that even compressed data is likely to have strong first-order statistical biases at the beginning of each

compressed chunk, especially when file headers are employed.

18

 0

 20

 40

 60

 80

 100

 120

 140

-512 -384 -256 -128 0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536
 60

 70

 80

 90

 100

 110

 120

 130

 140

-16 0 16 32 48 64 80 96

Fig. 8. Frequency scores for OpenSSL AES encryption of English text. Horizontal axis: cache
set. Timings performed on 3GHz Pentium 4E with HyperThreading. To the right we zoom
in on the AES lookup tables; the pattern corresponds to the top nibbles of the secret key
0x004080C0105090D02060A0E03070B0F0.

4.3 Measurements

One measurement method exploits the simultaneous multithreading (SMT, called “HyperThread-
ing” in Intel Corp. nomenclature) feature available in some high-performance processors (e.g.,
most modern Pentium and Xeon processors, as well as POWER5 processors, UltraSPARC T1
and others).30 This feature allows concurrent execution of multiple processes on the same physi-
cal processor, with instruction-level interleaving and parallelism. When the attacker process runs
concurrently with its victim, it can analyze the latter’s memory accesses in real time and thus
obtain higher resolution and precision; in particular, it can gather detailed statistics such as the
frequency scores F`(n) ∈ R. This can be done via a variant of the Prime+Probe measurements
of Section 3.5, as follows.

For each cache set, the attacker thread runs a loop which closely monitors the time it takes to
repeatedly load a set of memory blocks that exactly fills that cache set with W memory blocks
(similarly to step (c) of the Prime+Probe measurements).31 As long as the attacker is alone
in using the cache set, all accesses hit the cache and are very fast. However, when the victim
thread accesses a memory location which maps to the set being monitored, that causes one of
the attacker’s cache lines to be evicted from cache and replaced by a cache line from the victim’s
memory. This leads to one or (most likely) more cache misses for the attacker in subsequent loads,
and slows him down until his memory once more occupies all the entries in the set. The attacker
thus measures the time over an appropriate number of accesses and computes their average, thus
obtaining the frequency score F`(n).

4.4 Experimental results

Attacking a series of processes encrypting English text with the same key using OpenSSL, we
effectively retrieve 45.7 bits of information32 about the key after gathering timing data for just 1
minute. Timing data from one of the runs is shown in Figure 8.

30 We stress that this attack can be carried out also in the absence of simultaneous multithreading; see Section 4.5.
31 Due to the time-sensitivity and effects such as prefetching and instruction reordering, getting a significant signal

requires a carefully crafted architecture-specific implementation of the measurement code.
32 For keys with distinct high nibbles in each group of 4; see Section 4.1.

19

4.5 Variants and extensions

This attack vector is quite powerful, and has numerous possible extensions, such as the following.
Second-round analysis. The second round can be analyzed using higher-order statistics on
the plaintext, yielding enough key bits for exhaustive search.
Detecting access order. If measurements can be made to detect the order of accesses (which
we believe is possible with appropriately crafted code), the attacker can analyze more rounds
as well as extract the unknown permutations from the first round. Moreover, if the temporal
resolution suffices to observe adjacent rounds in a single encryption, then it becomes possible
to recover the complete key without even knowing the plaintext distribution, as long as it is
sufficiently nonuniform.
Other architectures. We have demonstrated the attack on a Pentium 4E with HyperThreading,
but it can also be performed on other platforms without relying on simultaneous multithreading.
The essential requirements is that the attacker can execute its own code while an encryption is
in progress, and this can be achieved by exploiting the interrupt mechanism. For example, the
attacker can predict RTC or timer interrupts and yield the CPU to the encrypting process a few
cycles before such an interrupt; the OS scheduler is invoked during the interrupt, and if dynamic
priorities are set up appropriately in advance then the attacker process will regain the CPU and
can analyze the state of the cache to see with great accuracy what the encrypting process accessed
during those few cycles.33

Multi-core and multi-processor. On multi-core processors, the lowest-level caches (L1 and
sometimes L2) are usually private to each core; but if the cryptographic code occasionally exceeds
these private caches and reaches caches that are shared among the cores (L2 or L3) then the
asynchronous attack becomes applicable at the cross-core level. In SMP systems, cache coherency
mechanisms may be exploitable for similar effect.
Remote attacks. As in the synchronous case, one can envision remote attack variants that take
advantage of data structures to which accesses can be triggered and timed through a network
(e.g., the TCP state table).

5 Countermeasures

In the following we discuss several potential methods to mitigate the information leakage. Since
these methods have different trade-offs and are architecture- and application-dependent, we can-
not recommend a single recipe for all implementers. Rather, we aim to present the realistic
alternatives along with their inherent merits and shortcomings. We focus our attention on meth-
ods that can be implemented in software, whether by operating system kernels or normal user
processes, running under today’s common general-purpose processors. Some of these countermea-
sures are presented as specific to AES, but have analogues for other primitives. Countermeasures
which require hardware modification are discussed in [47,48,10,50,49].

Caveat: due to the complex architecture-dependent considerations involved, we expect the
secure implementation of these countermeasures to be a very delicate affair. Implementers should
33 This was indeed subsequently demonstrated by [41]; see Section 6.5.

20

consider all exploitable effects given in [10], and carefully review their architecture for additional
effects.

5.1 Avoiding memory accesses

Our attacks exploit the effect of memory access on the cache, and would thus be completely
mitigated by an implementation that does not perform any table lookups. This may be achieved
by the following approaches.

First, one could use an alternative description of the cipher which replaces table lookups by an
equivalent series of logical operations. For AES this is particularly elegant, since the lookup tables
have concise algebraic descriptions, but performance is degraded by over an order of magnitude.34

Another approach is that of bitslice implementations [12]. These employ a description of the
cipher in terms of bitwise logical operations, and execute multiple encryptions simultaneously
by vectorizing the operations across wide registers. Their performance depends heavily on the
structure of the cipher, the processor architecture and the possibility of amortizing the cost across
several simultaneous encryptions (which depends on the use of an appropriate encryption mode).
For AES, bitsliced implementation on popular architectures can offer a throughput comparable to
that of lookup-based implementations [52][34][51][35][31][26], but only when several independent
blocks are processed in parallel.35 Bitsliced AES is thus efficient for parallelized encryption modes
such as CTR [35] and for exhaustive key search [62], but not for chained modes such as CBC.

Alternatively, one could use lookup tables but place the tables in registers instead of cache.
Some architectures (e.g., x86-64, PowerPC AltiVec and Cell SPE) have register files sufficiently
large to hold the 256-byte S-box table, and instructions (e.g., AltiVec’s VPERM and Cell’s
SHUFB) that allow for efficient lookups.

5.2 Alternative lookup tables

For AES, there are several similar formulations of the encryption and decryption algorithms that
use different sets of lookup tables. Above we have considered the most common implementation,
employing four 1024-byte tables T0, . . . , T3 for the main rounds. Variants have been suggested with
one 256-byte table (for the S-box), two 256-bytes tables (adding also 2•S[·]), one 1024-byte table
(just T0 with the rest obtained by rotations), and one 2048-byte table (T0, . . . , T3 compressed into
one table with non-aligned lookups). The same applies to the last round tables, T (10)

0 , . . . , T
(10)
3 .

For encryption (but not decryption), the last round can also be implemented by reusing one byte
out of every element in the main tables.36

In regard to the synchronous attacks considered in Section 3, the effect of using smaller
tables is to decrease the probability ρ that a given memory block will not be accessed during
the encryption (i.e., Qk(p, `, y) = 0) when the candidate guess k̃i is wrong. Since these are the

34 This kind of implementation has also been attacked through the timing variability in some implementations [30].
35 Optimal throughput requires 64 parallel blocks in [34], 64/128/192 in [51], 128 in [35], 4 in [31] and 8 in [26].
36 Beside memory saving, this has the benefit of foiling attacks based on the last round involving a separate set of

cache sets; see Section 3.8.

21

events that rule out wrong candidates, the amount of data and analysis in the one-round attack
is inversely proportional to log(1− ρ).

For the most compact variant with a single 256-byte table, and δ = 64, the probability is
ρ = (1− 1/4)160 ≈ 2−66.4, so the synchronous attack is infeasible – we’re unlikely to ever see an
unaccessed memory block. For the next most compact variant, using a single 1024 bytes table,
the probability is ρ = (1 − 1/16)160 ≈ 2−14.9, compared to ρ ≈ 0.105 in Section 3.2. The attack
will thus take about log(1−0.105)/ log(1−2−14.9) ≈ 3386 times more data and analysis, which is
inconvenient but certainly feasible for the attacker. The variant with a single 2KB table (8→ 64
bit) has ρ = (1 − 1/32)160, making the synchronous attack just 18 times less efficient than in
Section 3.2 and thus still doable within seconds.

For asynchronous attacks, if the attacker can sample at intervals on the order of single table
lookups (which is architecture-specific) then these alternative representations provide no appre-
ciable security benefit. We conclude that overall, this approach (by itself) is of very limited value.
However, it can be combined with some other countermeasures (see Sections 5.3, 5.5, 5.8).

5.3 Data-independent memory access pattern

Instead of avoiding table lookups, one could employ them but ensure that the pattern of accesses
to the memory is completely independent of the data passing through the algorithm. Most naively,
to implement a memory access one can read all entries of the relevant table, in fixed order, and
use just the one needed. Modern CPUs analyze dependencies and reorder instructions, so care
(and overhead) must be taken to ensure that the instruction and access scheduling, and their
timing, are completely data-independent.

If the processor leaks information only about whole memory blocks (i.e., not about the low
address bits),37 then it suffices that the sequence of accesses to memory blocks (rather than
memory addresses) is data-independent. To ensure this one can read a representative element from
every memory block upon every lookup.38 For the implementation of AES given in Section 2.2 and
the typical δ = 16, this means each logical table access would involve 16 physical accesses, a major
slowdown. Conversely, in the formulation of AES using a single 256-byte table (see Section 5.2),
the table consists of only 4 memory blocks (for δ = 64), so every logical table access (the dominant
innermost-loop operation) would involve just 4 physical accesses; but this formulation of AES is
inherently very slow.

A still looser variant is to require only that the sequence of accesses to cache sets is data-
independent (e.g., store each AES table in memory blocks that map to a single cache set). While
this poses a challenge to the cryptanalyst, it does not in general suffice to eliminate the leaked
signal: an attacker can still initialize the cache to a state where only a specific memory block is
missing from cache, by evicting all memory blocks from the corresponding cache set and then
reading back all but one (e.g., by triggering access to these blocks using chosen plaintexts); he can

37 This assumption is false for the Athlon 64 processor (due to cache bank collision effects), and possibly for other
processors as well. See Section 3.8 and [10].

38 This approach was suggested by Intel Corp. [17] for mitigating the attack of Percival on RSA [50], and incorpo-
rated into OpenSSL 0.9.7h. In the case of RSA the overhead is insignificant, since other parts of the computation
dominate the running time.

22

then proceed as in Section 3.4. Moreover, statistical correlations between memory block accesses,
as exploited in the collision attacks of Tsunoo et al. [57][56], are still present.

Taking a broader theoretical approach, Goldreich and Ostrovsky [22] devised a realization of
Oblivious RAM : a generic program transformation which hides all information about memory
accesses. This transformation is quite satisfactory from an (asymptotic) theoretical perspective,
but its concrete overheads in time and memory size are too high for most applications.39 Moreover,
it employs pseudo-random functions, whose typical realizations can also be attacked since they
employ the very same cryptographic primitives we are trying to protect.40

Xhuang, Zhang, Lee and Pande addressed the same issue from a more practical perspective and
proposed techniques based on shuffling memory content whenever it is accessed [63] or occasionally
permuting the memory and keeping the cache locked between permutations [64]. Both techniques
require non-trivial hardware support in the processor or memory system, and do not provide
perfect security in the general case.

A simple heuristic approach is to add noise to the memory access pattern by adding spurious
accesses, e.g., by performing a dummy encryption in parallel to the real one. This decreases the
signal visible to the attacker (and hence necessitates more samples), but does not eliminate it.

5.4 Application-specific algorithmic masking

There is extensive literature about side-channel attacks on hardware ASIC and FPGA implemen-
tations, and corresponding countermeasures. Many of these countermeasures are implementation-
specific and thus of little relevance to us, but some of them are algorithmic. Of particular interest
are masking techniques, which effectively randomize all data-dependent operations by applying
random transformations; the difficulty lies, of course, in choosing transformations that can be
stripped away after the operation. One can think of this as homomorphic secret sharing, where
the shares are the random mask and the masked intermediate values. For AES, several mask-
ing techniques have been proposed (see e.g. [46], [53] and the references within). However, most
(except [53]) are designed to protect only against first-order analysis, i.e., against attacks that
measure some aspect of the state only at one point in the computation – our asynchronous attacks
do not fall into this category. Moreover, the security proofs consider leakage only of specific inter-
mediate values, which do not correspond to the ones leaking via memory access metadata. Lastly,
every AES masking method we are aware of has either been shown to be insecure even for its orig-
inal setting (let alone ours), or is significantly slower in software than a bitslice implementation
(see Section 5.1).

Finding an efficient masking scheme for AES on 32-bit (or wider) processors that is resilient
to cache attacks is thus an open problem.

39 The Oblivious RAM model of [22] protects against a stronger adversary which is also able to corrupt the data
in memory. If one is interested only in achieving correctness (not secrecy) in the face of such corruption, then
Blum et al. [14] provide more efficient schemes and Naor and Rothblum [38] provide strong lower bounds.

40 In [22] it is assumed that the pseudorandom functions are executed completely within a secure CPU, without
memory accesses. If such a CPU was available, we could use it to run the AES algorithm itself.

23

5.5 Cache state normalization and process blocking

To foil the synchronous attacks of Section 3, it suffices to ensure that the cache is in a data-
independent normalized state (e.g., by loading all lookup table elements into cache) at any entry
to and exit from the encryption code (including interrupt and context switching by the operating
system). Thus, to foil the Prime+Probe attack it suffices to normalize the state of the cache
after encryption. To foil the Evict+Time attack one needs to normalize the state of the cache
immediately before encryption (as in [47]), and also after every interrupt occurring during an
encryption (the memory accesses caused by the interrupt handler will affect the state of the cache
in some semi-predictable way and can thus be exploited by the attacker similarly to the Evict
stage of Evict+Time). Performing the normalization after interrupts typically requires operating
system support (see Section 5.11). As pointed out in [10, Sections 12 and 14], it should be ensured
that the table elements are not evicted by the encryption itself, or by accesses to the stack, inputs
or outputs; this is a delicate architecture-dependent affair.

A subtle aspect is that the cache state, which we seek to normalize, includes a hidden state
which is used by the CPU’s cache eviction algorithm (typically Least Recently Used or variants
thereof). If multiple lookup table memory blocks are mapped to the same cache set (e.g., OpenSSL
on the Pentium 4E; see Table 1), the hidden state could leak information about which of these
blocks was accessed last even if all of them are cached; an attacker can exploit this to analyze the
last rounds in the encryption (or decryption).

All of these countermeasures provide little protection against the asynchronous attacks of
Section 4. To fully protect against those, during the encryption one would have to disable inter-
rupts and stop simultaneous threads (and perhaps also other processors on an SMP machine, due
to the cache coherency mechanism). This would significantly degrade performance on SMT and
SMP machines, and disabling interrupts for long durations will have adverse effects. A method
for blocking processes more selectively based on process credentials and priorities is suggested in
[50].

Note that normalizing the cache state frequently (e.g., by reloading all tables after every AES
round) would merely reduce the signal-to-noise of the asynchronous attacks, not eliminate them.

5.6 Disabling cache sharing

To protect against software-based attacks, it would suffice to prevent cache state effects from
spanning process boundaries. Alas, practically this is very expensive to achieve. On current single-
threaded processors, it would require flushing all caches during every context switch. Alternatively,
and necessarily on a processor with simultaneous multithreading, the CPU can be designed to
allow separate processes to use separate logical caches that are statically allocated within the
physical cache (e.g., each with half the size and half associativity). Besides reduced performance
and lack of support in current processors, one would also need to consider the effect of cache
coherency mechanisms in SMP configurations, as well as the caveats in Section 5.3.

A relaxed version would activate the above means only for specific processes, or specific code
sections, marked as sensitive. This is especially appropriate for the operating system kernel, but
can be extended to user processes as explained in Section 5.11.

24

To separate two processes with regard to the attacks considered here, it suffices41 to ensure
that all memory accessible by one process is mapped into a group of cache sets that is disjoint
from that of the other process.42 In principle, this can be ensured by the operating system virtual
memory allocator, through a suitable page coloring algorithm. Alas, this fails on both of the major
x86 platforms: in modern Intel processors every 4096-byte memory page is mapped to every cache
set in the L1 cache (see Table 1), while in AMD processors the L1 cache is indexed by virtual
addresses (rather than physical addresses) and these are allocated contiguously.

5.7 Static or disabled Cache

One brutal countermeasure against the cache-based attacks is to completely disable the CPU’s
caching mechanism.43 Of course, the effect on performance would be devastating, slowing down
encryption by a factor of about 100. A more attractive alternative is to activate a “no-fill” mode44

where the memory accesses are serviced from the cache when they hit it, but accesses that miss the
cache are serviced directly from memory (without causing evictions and filling). The encryption
routine would then proceed as follows:

(a) Preload the AES tables into cache
(b) Activate “no-fill” mode
(c) Perform encryption
(d) Deactivate “no-fill” mode

The section spanning (a) and (b) is critical, and attacker processes must not be allowed to run
during this time. However, once this setup is completed, step (c) can be safely executed. The
encryption per se would not be slowed down significantly (assuming its inputs are in cache when
“no-fill” is enabled), but its output will not be cached, leading to subsequent cache misses when
the output is used (in chaining modes, as well as for the eventual storage or transmission). Other
processes executed during (c), via multitasking or simultaneous multithreading, may incur a
severe performance penalty. Breaking the encryption chunks into smaller chunks and applying
the above routine to each chunk would reduce this effect somewhat, by allowing the cache to be
occasionally updated to reflect the changing memory working set.

Intel’s family of Pentium and Xeon processors supports such a mode,45 but the cost of enabling
and disabling it are prohibitive. Also, some ARM implementations allow cache lines to be locked
(e.g., [25, Section 3.4.4]). We do not know which other processor families currently offer this
functionality.

This method can be employed only in privileged mode, which is typically available only to
the operating system kernel (see Section 5.11), and may be competitive performance-wise only

41 In the absence of low-address-bit leakage due to cache bank collisions.
42 This was proposed to us by Úlfar Erlingsson of Microsoft Research.
43 Some stateful effects would remain, such as the DRAM bank activation. These might still provide a low-

bandwidth side channel in some cases.
44 Not to be confused with the “disable cache flushing” mode suggested in [48], which is relevant only in the context

of smartcards.
45 Enable the CD bit of CR0 and, for some models, adjust the MTRR. Coherency and invalidation concerns apply.

25

for encryption of sufficiently long sequences. In some cases it may be possible to delegate the
encryption to a co-processor with the necessary properties. For example, IBM’s Cell processor
consists of a general-purpose (PowerPC) core along with several “Synergistic Processing Element”
(SPE) cores. The latter have a fast local memory but it is not a cache per se, i.e., there are no
automatic transfers to or from main memory, thus, SPEs employed as cryptographic co-processors
would not be susceptible to this attack.46

5.8 Dynamic table storage

The cache-based attacks observe memory access patterns to learn about the table lookups. Instead
of eliminating these, we may try to decorrelate them. For example, one can use many copies of
each table, placed at various offsets in memory, and have each table lookup (or small group of
lookups) use a pseudorandomly chosen table. Ideally, the implementation will use S copies of the
tables, where S is the number of cache sets (in the largest relevant cache). However, this means
most table lookups will incur cache misses. Somewhat more compactly, one can use a single table,
but pseudorandomly move it around in memory several times during each encryption.47 If the
tables reside in different memory pages, one should consider and prevent leakage (and performance
degradation) through page table cache (i.e., Table Lookaside Buffer) misses.

Another variant is to mix the order of the table elements several times during each encryption.
The permutations need to be chosen with lookup efficiency in mind (e.g., via a linear congruential
sequence), and the choice of permutation needs to be sufficiently strong; in particular, it should
employ entropy from an external source (whose availability is application-specific).48

The performance and security of this approach are very architecture-dependent. For example,
the required strength of the pseudorandom sequence and frequency of randomization depend on
the maximal probing frequency feasible for the attacker.

5.9 Hiding the timing

All of our attacks perform timing measurements, whether of the encryption itself (in Section 3.4) or
of accesses to the attacker’s own memory (in all other cases). A natural countermeasure for timing
attacks is to try to hide the timing information. One common suggestion for mitigating timing
attacks is to add noise to the observed timings by adding random delays to measured operations,
thereby forcing the attacker to perform and average many measurements. Another approach is to
normalize all timings to a fixed value, by adding appropriate delays to the encryption, but beside
the practical difficulties in implementing this, it means all encryptions have to be as slow as
46 In light of the Cell’s high parallelism and the SPE’s abundance of 128-bit registers (which can be effectively uti-

lized by bitslice implementations), it has considerable performance potential in cryptographic and cryptanalytic
applications (e.g., [54]).

47 If the tables stay static for long then the attacker can locate them (see Section 3.6) and discern their organization.
This was prematurely dismissed by Lauradoux [32], who assumed that the mapping of table entries to memory
storage will be attacked only by exhaustive search over all possible such mappings; the mapping can be recovered
efficiently on an entry-by-entry basis.

48 Some of these variants were suggested to us by Intel Corp, and implemented in [16], following an early version
of this paper.

26

the worst-case timing (achieved here when all memory accesses miss the cache). Neither of these
provide protection against the Prime+Probe synchronous attack or the asynchronous attack.

At the operating system or processor level, one can limit the resolution or accuracy of the clock
available to the attacker; as discussed by Hu [23], this is a generic way to reduce the bandwidth
of side channels, but is non-trivial to achieve in the presence of auxiliary timing information (e.g.,
from multiple threads [50]), and will unpredictably affect legitimate programs that rely on precise
timing information. The attacker will still be able to obtain the same information as before by
averaging over more samples to compensate for the reduced signal-to-noise ratio. Since some of
our attacks require only a few milliseconds of measurements, to make them infeasible the clock
accuracy may have to be degraded to an extent that interferes with legitimate applications.

5.10 Selective round protection

The attacks described in Sections 3 and 4 detect and analyze memory accesses in the first two
rounds (for known input) or last two rounds (for known output). To protect against these specific
attacks it suffices to protect those four rounds by some of the means given above (i.e., hiding,
normalizing or preventing memory accesses), while using the faster, unprotected implementation
for the internal rounds.49 This does not protect against other cryptanalytic techniques that can
be employed using the same measurement methods. For example, with chosen plaintexts, the
table accesses in the 3rd round can be analyzed by differential cryptanalysis (using a 2-round
truncated differential). None the less, those cryptanalytic techniques require more data and/or
chosen data, and thus when quantitatively balancing resilience against cache-based attacks and
performance, it is sensible to provide somewhat weaker protection for internal rounds.

5.11 Operating system support

Several of the countermeasures suggested above require privileged operations that are not avail-
able to normal user processes in general-purpose operating systems. In some scenarios and plat-
forms, these countermeasures may be superior (in efficiency or safety) to any method that can
be achieved by user processes. One way to address this is to provide secure execution of crypto-
graphic primitives as operating system services. For example, the Linux kernel already contains a
modular library of cryptographic primitives for internal use; this functionality could be exposed
to user processes through an appropriate interface. A major disadvantage of this approach is its
lack of flexibility: support for new primitives or modes will require operating system modifications
(or loadable drivers) which exceed the scope of normal applications.

An alternative approach is to provide a secure execution facility to user processes.50 This
facility would allow the user to mark a “sensitive section” in his code and ask the operating
system to execute it with a guarantee: either the sensitive section is executed under a promise
sufficient to allow efficient execution (e.g., disabled task switching and parallelism, or cache in“no-
fill”mode — see above), or its execution fails gracefully. When asked to execute a sensitive section,

49 This was suggested to us by Intel Corp, and implemented in [16], following an early version of this work.
50 Special cases of this were discussed in [50] and [10], though the latter calls for this to be implemented at the

CPU hardware level.

27

the operating system will attempt to put the machine into the appropriate mode for satisfying the
promise, which may require privileged operations; it will then attempt to fully execute the code
of the sensitive section under the user’s normal permissions. If this cannot be accomplished (e.g.,
a hardware interrupt may force task switching, normal cache operation may have to be enabled
to service some performance-critical need, or the process may have exceeded its time quota) then
the execution of the sensitive section will be aborted and prescribed cleanup operations will be
performed (e.g., complete cache invalidation before any other process is executed). The failure
will be reported to the process (now back in normal execution mode) so it can restart the failed
sensitive section later.

The exact semantics of this “sensitive section” mechanism depend on the specific countermea-
sure and on the operating system’s conventions. This approach, while hardly the simplest, offers
maximal flexibility to user processes; it may also be applicable inside the kernel when the promise
cannot be guaranteed to hold (e.g., if interrupts cannot be disabled).

5.12 Hardware AES support

Several major vendors (including Intel, AMD, Sun, and Via) have recently announced or imple-
mented specialized AES hardware support in their chips. Assuming the hardware executes the
basic AES operation with constant resource consumption, this allows for efficient AES execution
that is invulnerable to our attacks. Other code running on the system may, of course, remain
vulnerable to cache attacks.

Similarly, AES may be relegated to a hardware implementation in a secure coprocessor. In
particular, Trusted Platform Module (TPM) chip are nowadays ubiquitous; alas, they are typically
too slow for bulk encryption.

6 Conclusions and implications

6.1 Summary of results

We described novel attacks which exploit inter-process information leakage through the state of
the CPU’s memory cache. This leakage reveals memory access patterns, which can be used for
cryptanalysis of cryptographic primitives that employ data-dependent table lookups. Exploit-
ing this leakage allows an unprivileged process to attack other processes running in parallel on
the same processor, despite partitioning methods such as memory protection, sandboxing and
virtualization. Some of our methods require only the ability to trigger services that perform en-
cryption or MAC using the unknown key, such as encrypted disk partitions or secure network
links. Moreover, we demonstrated an extremely strong type of attack, which requires knowledge
of neither the specific plaintexts nor ciphertexts, and works by merely monitoring the effect of
the cryptographic process on the cache. We discussed in detail several such attacks on AES, and
experimentally demonstrated their applicability to real systems, such as OpenSSL and Linux’s
dm-crypt encrypted partitions (in the latter case, the full key was recovered after just 800 writes
to the partition, taking 65 milliseconds). Finally, we proposed a variety of countermeasures.

28

6.2 Vulnerable cryptographic primitives

The cache attacks we have demonstrated are particularly effective for typical implementations
of AES, for two reasons. First, the memory access patterns have a simple relation to the inputs;
for example, the indices accessed in the first round are simply the XOR of a key byte and a
plaintext byte. Second, the parameters of the lookup tables are favorable: there is a large number
of memory blocks involved (but not too many to exceed the cache size) and thus many bits are
leaked by each access. Moreover, there is a significant probability that a given memory block will
not be accessed at all during a given random encryption.

Beyond AES, such attacks are potentially applicable to any implementation of a cryptographic
primitive that performs key- and input-dependent memory accesses. The efficiency of an attack
depends heavily on the structure of the cipher and chosen implementation, but heuristically, large
lookup tables increase the effectiveness of all attacks: having few accesses to each table helps the
synchronous attacks, whereas the related property of having temporally infrequent accesses to
each table helps the asynchronous attack. Large individual table entries also aid the attacker, in
reducing the uncertainty about which table entry was addressed in a given memory block. This
is somewhat counterintuitive, since it is usually believed that large S-boxes are more secure.

For example, DES is vulnerable when implemented using large lookup tables which incorporate
the P permutation and/or to compute two S-boxes simultaneously. Cryptosystems based on large-
integer modular arithmetic, such as RSA, can be vulnerable when exponentiation is performed
using a precomputed table of small powers (see [50]). Moreover, a naive square-and-multiply
implementation would leak information through accesses to long-integer operands in memory.
The same potentially applies to ECC-based cryptosystems.

Primitives that are normally implemented without lookup tables, such as the SHA family
[40] and bitsliced Serpent [9], are impervious to the attacks described here. However, to pro-
tect against timing attacks one should scrutinize implementations for use of instructions whose
timing is key- and input-dependent (e.g., bit shifts and multiplications on some platforms) and
for data-dependent execution branches (which may be analyzed through data cache access, in-
struction/trace cache access or timing). Note that timing variability of non-memory operations
can be measured by an unrelated process running on the same machine, using a variant of the
asynchronous attack, via the effect of those operations on the scheduling of memory accesses.

We stress that cache attacks are potentially applicable to any program code, cryptographic
or otherwise. Above we have focused on cryptographic operations because these are designed and
trusted to protect information, and thus information leakage from within them can be critical
(for example, recovering a single decryption key can compromise the secrecy of all messages sent
over the corresponding communication channel). However, information leakage can be harmful
also in non-cryptographic context. For example, even knowledge of what programs are running
on someone’s computer at a given time can be sensitive.

6.3 Vulnerable systems

At the system level, cache state analysis is of concern in essentially any case where process separa-
tion is employed in the presence of malicious code. This class of systems includes many multi-user

29

systems, as well as web browsing, DRM applications, the Trusted Computing Platform [55]51 and
NGSCB [37]. The same applies to acoustic cryptanalysis, whenever malicious code can access a
nearby microphone device and thus record the acoustic effects of other local processes.

Disturbingly, virtual machines and sandboxes offer little protection against the asynchronous
cache attack (in which attacker needs only the ability to access his own memory and measure
time) and against the acoustic attacks (if the attacker gains access to a nearby microphone). Thus,
our attacks may cross the boundaries supposedly enforced by FreeBSD jail(), VMware [61]52,
Xen [59], the Java Virtual Machine [33] and plausibly even scripting language interpreters. To-
day’s hardware-assisted virtualization technologies, such as Intel’s “Virtualization Technology”
and AMD’s “Secure Virtual Machine, offer no protection either.

Remote cache attacks are in principle possible, and if proven efficient they could pose serious
threats to secure network connections such as IPsec [28] and OpenVPN [43].

Finally, while we have focused our attention on cryptographic systems (in which even small
amount of leakage can be devastating), the leakage also occurs in non-cryptographic systems and
may thus leak sensitive information directly.

6.4 Mitigation

We have described a variety of countermeasures against cache state analysis attacks; some of these
are generic, while others are specific to AES. However, none of these unconditionally mitigates
the attacks while offering performance close to current implementations. Thus, finding an efficient
and secure solution that is application- and architecture-independent remains an open problem.
In evaluating countermeasures, one should pay particular attention to the asynchronous attacks,
which on some platforms allow the attacker to obtain (a fair approximation of) the full transcript
of memory accesses done by the cryptographic code.

6.5 Follow-up works

Since the initial publications of these results [44][45], numerous extensions and variants have been
suggested, including the following.
Countermeasures. Brickell et al. of Intel Corp. [16][17] implemented and experimentally eval-
uated several AES implementations that reduce the cache side-channel leakage (see discussion in
Section 5), and Page [49] evaluated partitioned cache architectures as a countermeasure.
Survey and extensions to related attacks. In [18], Canteaut et al. survey and classify the
various cache attacks, and proposes extensions and countermeasures.
Collision-based attacks. As discussed in Section 1.2, [18] describes an attack on AES based on
exploiting internal cache collisions, following the approach of Tsunoo et al. This was improved by
Bonneau and Mironov [15] (attacking the first or last round) and by Acıiçmez et al. [7] (attacking
the first round). These attacks still require many thousands of encryptions even for an in-process
OpenSSL target.
51 While the Trusted Computing Module (TPM) chip itself may be invulnerable to software attacks, it cannot

effectively enforce information flow control in the rest of the system when side channels are present.
52 This compromises the system described in the recent NSA patent 6,922,774.[36]

30

Exploiting the OS scheduler. In [41], Neve and Seifert empirically demonstrate the effec-
tiveness of an extension we have merely alluded to hypothetically: carrying out an asynchronous
attack without simultaneous multithreading, by exploiting only the OS scheduling and interrupts.
Indeed, they show that with appropriate setup their approach provides excellent temporal reso-
lution. They also demonstrate the effectiveness of analyzing the last round of AES instead of the
first one, where applicable (see Section 3.8).
Branch prediction and instruction cache attacks. In [5,6,2], Acıiçmez et al. describe new
classes of attacks that exploit the CPU instruction cache or its branch prediction mechanism,
instead of the data cache considered herein. They demonstrate efficient RSA key recovery via
contention for these resources. The measurement approaches (and hence attack scenarios) are
similar to the data cache attack techniques described here, but the information obtained is about
the execution path rather than data accesses. Veith et al. [60] presented a related attack, which
monitors branch prediction via the CPU performance counters. Since the type of vulnerable code
is different compared to data cache attacks, these attacks are complementary.
Multiplier unit contention attacks. In [8], Acıiçmez and Seifert demonstrate another mi-
croarchitectural side channel: contention for the multiplication unit when two processes are run-
ning concurrently on an Intel HyperThreading CPU. They exploit this to eavesdrop on modular
exponentiation in RSA signing.

Indubitably, further side channels in all levels of system architecture will be created and
discovered, as hardware grows in parallelism and complexity.

Acknowledgments. We are indebted to Ernie Brickell, Jean-Pierre Seifert and Michael
Neve of Intel Corp. for insightful discussions and proposal of several countermeasures, to Daniel
J. Bernstein for suggesting the investigation of remote attacks, and to Eli Biham, Paul Karger,
Maxwell Krohn and the anonymous referees for their helpful pointers and comments.

References

1. Martin Abadi, Mike Burrows, Mark Manasse, Ted Wobber, Moderately hard, memory-bound functions, ACM
Transactions on Internet Technology, vol. 5, issue 2, pp. 299–327, 2005

2. Onur Acıiçmez, Yet another microarchitectural attack: exploiting I-cache, IACR Cryptology ePrint Archive,
report 2007/164, 2007, http://eprint.iacr.org/2007/164

3. Onur Acıiçmez, Çetin Kaya Koç, Trace driven cache attack on AES, IACR Cryptology ePrint Archive, report
2006/138, 2006, http://eprint.iacr.org/2006/138; full version of [4]

4. Onur Acıiçmez, Çetin Kaya Koç, Trace driven cache attack on AES (short paper), proc. International Confer-
ence on Information and Communications Security (ICICS) 2006, Lecture Notes in Computer Science 4296,
pp. 112–121, Springer-Verlag, 2006; short version of [3]

5. Onur Acıiçmez, Çetin Kaya Koç, Jean-Pierre Seifert, On the power of simple branch prediction analysis, IACR
Cryptology ePrint Archive, report 2006/351, 2006

6. Onur Acıiçmez, Çetin Kaya Koç, Jean-Pierre Seifert, Predicting secret keys via branch prediction, proc. RSA
Conference Cryptographers Track (CT-RSA) 2007, Lecture Notes in Computer Science 4377, pp. 225–242,
Springer-Verlag, 2007

7. Onur Acıiçmez, Werner Schindler, Çetin Kaya Koç, Cache based remote timing attack on the AES, proc. RSA
Conference Cryptographers Track (CT-RSA) 2007, Lecture Notes in Computer Science 4377, pp. 271–286,
Springer, 2007

31

http://eprint.iacr.org/2007/164
http://eprint.iacr.org/2006/138

8. Onur Acıiçmez, Jean-Pierre Seifert, Cheap hardware parallelism implies cheap security, proc. Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC) 2007, 80–91, IEEE, 2007

9. Ross J. Anderson, Eli Biham, Lars R. Knudsen, Serpent: A proposal for the Advanced Encryption Standard,
AES submission, 1998, http://www.cl.cam.ac.uk/~rja14/serpent.html

10. Daniel J. Bernstein, Cache-timing attacks on AES, preprint, 2005, http://cr.yp.to/papers.html#

cachetiming

11. Guido Bertoni, Vittorio Zaccaria, Luca Breveglieri, Matteo Monchiero, Gianluca Palermo, AES power attack
based on induced cache miss and countermeasure, proc. International Conference on Information Technology:
Coding and Computing (ITCC’05), pp. 586–591, IEEE, 2005

12. Eli Biham, A fast new DES implementation in software, proc. Fast Software Encryption (FSE) 1997, Lecture
Notes in Computer Science 1267, pp. 260–272, Springer-Verlag, 1997

13. Eli Biham, Adi Shamir, Differential cryptanalysis of DES-like Cryptosystems, Journal of Cryptology, vol. 4,
no. 1, pp. 3–72, 1991

14. Manuel Blum, William Evans, Peter Gemmell, Sampath Kannan, Moni Naor, Checking the correctness of
memories, proc. Conference on Foundations of Computer Science (FOCS) 1991, pp. 90–99, IEEE, 1991

15. Joseph Bonneau, Ilya Mironov, Cache-collision timing attacks against AES, proc. Cryptographic Hardware
and Embedded Systems (CHES) 2006, Lecture Notes in Computer Science 4249, pp. 201–215, Springer-Verlag,
2006

16. Ernie Brickell, Gary Graunke, Michael Neve, Jean-Pierre Seifert, Software mitigations to hedge AES against
cache-based software side channel vulnerabilities, IACR Cryptology ePrint Archive, report 2006/052, 2006,
http://eprint.iacr.org/2006/052

17. Ernie Brickell, Gary Graunke, Jean-Pierre Seifert, Mitigating cache/timing attacks in AES and RSA software
implementations, RSA Conference 2006, San Jose, session DEV-203, 2006, http://2006.rsaconference.com/
us/cd_pdfs/DEV-203.pdf

18. Anne Canteaut, Cédric Lauradoux, André Seznec, Understanding cache attacks, research report RR-5881,
INRIA, April 2006, http://www-rocq.inria.fr/codes/Anne.Canteaut/Publications/RR-5881.pdf

19. Joan Daemen, Vincent Rijmen, AES Proposal: Rijndael, version 2, AES submission, 1999, http://csrc.nist.
gov/archive/aes/rijndael/Rijndael-ammended.pdf

20. Joan Daemen, Vincent Rijmen, The design of Rijndael: AES — The Advanced Encryption Standard, ISBN
3-540-42580-2, Springer-Verlag, 2001

21. Cynthia Dwork, Andrew Goldberg, Moni Naor, On memory-bound functions for fighting spam, proc.
CRYPTO’2003, Lecture Notes in Computer Science 2729, pp. 426–444, Springer-Verlag, 2003

22. Oded Goldreich, Rafail Ostrovsky, Software protection and simulation on oblivious RAMs, Journal of the ACM,
vol. 43 no. 3, pp. 431–473, 1996

23. Wei-Ming Hu, Reducing timing channels with fuzzy time, proc. IEEE Computer Society Symposium on Research
in Security and Privacy, pp. 8–20, IEEE, 1991

24. Wei-Ming Hu, Lattice scheduling and covert channels, IEEE Symposium on Security and Privacy, pp. 52–61,
IEEE, 1992

25. Intel Corp., Intel IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor De-
veloper’s Manual, Order Number 252480-006US, 2006, http://www.intel.com/design/network/manuals/

252480.htm

26. Emilia Käsper, Peter Schwabe, Faster and Timing-Attack Resistant AES-GCM, IACR Cryptology ePrint
Archive, report 2009/129, 2009, http://eprint.iacr.org/2009/129

27. John Kelsey, Bruce Schneier, David Wagner, Chris Hall, Side channel cryptanalysis of product ciphers, proc.
5th European Symposium on Research in Computer Security, Lecture Notes in Computer Science 1485, pp.
97–110, Springer-Verlag, 1998

28. Stephen Kent et al., RFC 4301 through RFC 4309, Network Working Group Request for Comments, http:
//rfc.net/rfc4301.html etc., 2005

29. Richard E. Kessler, Mark D. Hill, Page placement algorithms for large real-indexed caches, ACM Transactions
on Computer systems, vol. 10, no. 4, pp. 338–359, 1992

30. François Koeune, Jean-Jacques Quisquater, A timing attack against Rijndael, technical report CG-1999/1,
Université catholique de Louvain, http://www.dice.ucl.ac.be/crypto/tech_reports/CG1999_1.ps.gz

32

http://www.cl.cam.ac.uk/~rja14/serpent.html
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
http://eprint.iacr.org/2006/052
http://2006.rsaconference.com/us/cd_pdfs/DEV-203.pdf
http://2006.rsaconference.com/us/cd_pdfs/DEV-203.pdf
http://www-rocq.inria.fr/codes/Anne.Canteaut/Publications/RR-5881.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://www.intel.com/design/network/manuals/252480.htm
http://www.intel.com/design/network/manuals/252480.htm
http://eprint.iacr.org/2009/129
http://rfc.net/rfc4301.html
http://rfc.net/rfc4301.html
http://www.dice.ucl.ac.be/crypto/tech_reports/CG1999_1.ps.gz

31. Robert Könighofer, A fast and cache-timing resistant implementation of the AES, proc. RSA Conference Cryp-
tographers Track (CT-RSA) 2008, Lecture Notes in Computer Science 4964, 187–202, Springer-Verlag, 2008

32. Cédric Lauradoux, Collision attacks on processors with cache and countermeasures, Western European Work-
shop on Research in Cryptology (WEWoRC) 2005, Lectures Notes in Informatics, vol. P-74, pp. 76–85, 2005,
http://www.cosic.esat.kuleuven.ac.be/WeWorc/allAbstracts.pdf

33. Tim Lindholm, Frank Yellin, The Java virtual machine specification, 2nd edition, Prentice Hall, 1999

34. Mitsuru Matsui, How far can we go on the x64 processors?, proc. Fast Software Encryption (FSE) 2006, Lecture
Notes in Computer Science 4047, pp. 341–358, Springer-Verlag, 2006

35. Mitsuru Matsui, Junko Nakajima, On the power of bitslice implementation on Intel Core2 processor, proc. Cryp-
tographic Hardware and Embedded Systems (CHES) 2007, Lecture Notes in Computer Science 4727, pp.
121–134, Springer-Verlag, 2007

36. Robert V. Meushaw, Mark S. Schneider, Donald N. Simard, Grant M. Wagner, Device for and method of secure
computing using virtual machines, US patent 6,922,774, 2005

37. Microsoft Corp., Next-generation secure computing base, web page, http://www.microsoft.com/resources/
ngscb

38. Moni Naor, Guy N. Rothblum, The complexity of online memory checking, proc. 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS) 2005, pp. 573–584, IEEE, 2005

39. National Institute of Standards and Technology, Advanced Encryption Standard (AES), FIPS PUB 197, 2001

40. National Institute of Standards and Technology, Secure Hash Standard (SHS), FIPS PUB 180-2, 2002

41. Michael Neve, Jean-Pierre Seifert, Advances on access-driven cache attacks on AES, proc. Selected Areas in
Cryptography (SAC’06), Lecture Notes in Computer Science 4356, pp. 147–162, Springer-Verlag, 2006

42. Michael Neve, Jean-Pierre Seifert, Zhenghong Wang, A refined look at Bernstein’s AES side-channel analysis,
proc. ACM Symposium on Information, computer and communications security, pp. 369–369, 2006

43. OpenVPN Solutions LLC, OpenVPN — An Open Source SSL VPN Solution by James Yonan, web site, http:
//openvpn.net

44. Dag Arne Osvik, Adi Shamir, Eran Tromer, Other people’s cache: Hyper Attacks on HyperThreaded processors,
Fast Software Encryption (FSE) 2005 rump session, Feb. 2005

45. Dag Arne Osvik, Adi Shamir, Eran Tromer, Cache attacks and countermeasures: the case of AES, proc. RSA
Conference Cryptographers Track (CT-RSA) 2006, Lecture Notes in Computer Science 3860, pp. 1–20, Springer-
Verlag, 2006

46. Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, Vincent Rijmen, A side-channel analysis resistant
description of the AES S-box, proc. Fast Software Encryption (FSE) 2005, Lecture Notes in Computer Science
3557, pp. 413–423, Springer-Verlag, 2005

47. Daniel Page, Theoretical use of cache memory as a cryptanalytic side-channel, technical report CSTR-02-003,
Department of Computer Science, University of Bristol, 2002, http://www.cs.bris.ac.uk/Publications/pub_
info.jsp?id=1000625

48. Daniel Page, Defending against cache-based side-channel attacks, Information Security Technial Report, vol. 8
issue. 8, 2003

49. Daniel Page, Partitioned cache architecture as a side-channel defence mechanism, IACR Cryptology ePrint
Archive, report 2005/280, 2005, http://eprint.iacr.org/2005/280

50. Colin Percival, Cache missing for fun and profit, BSDCan 2005, Ottawa, 2005; see http://www.daemonology.

net/hyperthreading-considered-harmful

51. Chester Rebeiro, David Selvakumar, A. S. L. Devi, Bitslice implementation of AES, proc. Cryptology and
Network Security (CANS) 2006, Lecture Notes in Computer Science 4301, pp. 203–212, Springer-Verlag, 2006

52. Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R. Rao, Pankaj Rohatgi, Efficient
Rijndael encryption implementation with composite field arithmetic, proc. Cryptographic Hardware and Em-
bedded Systems (CHES) 2001, Lecture Notes in Computer Science 2162, Springer-Verlag, pp. 171–184, 2001

53. Kai Schramm, Christof Paar, Higher Order Masking of the AES, proc. RSA Conference Cryptographers Track
(CT-RSA) 2006, Lecture Notes in Computer Science 3860, pp. 208–225, Springer-Verlag, 2006

54. Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra, David Molnar, Dag Arne Osvik and Benne
de Weger, Short chosen-prefix collisions for MD5 and the creation of a rogue CA certificate, proc. CRYPTO
2009, to be published, http://www.win.tue.nl/hashclash/rogue-ca/

33

http://www.cosic.esat.kuleuven.ac.be/WeWorc/allAbstracts.pdf
http://www.microsoft.com/resources/ngscb
http://www.microsoft.com/resources/ngscb
http://openvpn.net
http://openvpn.net
http://www.cs.bris.ac.uk/Publications/pub_info.jsp?id=1000625
http://www.cs.bris.ac.uk/Publications/pub_info.jsp?id=1000625
http://eprint.iacr.org/2005/280
http://www.daemonology.net/hyperthreading-considered-harmful
http://www.daemonology.net/hyperthreading-considered-harmful
http://www.win.tue.nl/hashclash/rogue-ca/

55. Trusted Computing Group, Trusted Computing Group: Home, web site, http://www.trustedcomputinggroup.
org

56. Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, Hiroshi Miyauchi, Cryptanalysis of DES im-
plemented on computers with cache, proc. Cryptographic Hardware and Embedded Systems (CHES) 2003,
Lecture Notes in Computer Science 2779, 62-76, 2003

57. Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, Hiroshi Miyauchi, Cryptanalysis of block ciphers
implemented on computers with cache, proc. International Symposium on Information Theory and its Appli-
cations 2002, pp. 803–806, 2002

58. Yukiyasu Tsunoo, Etsuko Tsujihara, Maki Shigeri, Hiroyasu Kubo, Kazuhiko Minematsu, Improving cache
attacks by considering cipher structure, International Journal of Information Security, “Online First”, Springer-
Verlag, Nov. 2005

59. University of Cambridge Computer Laboratory, The Xen virtual machine monitor, web site, http://www.cl.
cam.ac.uk/research/srg/netos/xen

60. Alexander A. Veith, Andrei V. Belenko, Alexei Zhukov, A preview on branch misprediction attacks: using
Pentium performance counters to reduce the complexity of timing atttacks, CRYPTO’06 rump session, 2006

61. VMware Inc., VMware: virtualization, virtual machine & virtual server consolidation, web site, http://www.
vmware.com

62. Jason Yang, James Goodman, Symmetric key cryptography on modern graphics hardware, proc. Asiacrypt 2007,
Lecture Notes in Computer Science 4833, pp. 249–264, Springer-Verlag, 2007

63. Xiaotong Zhuang, Tao Zhang, Hsien-Hsin S. Lee, Santosh Pande, Hardware assisted control flow obfuscation for
embedded processors, proc. International Conference on Compilers, Architectures and Synthesis for Embedded
Systems, 292-302, ACM, 2004

64. Xiaotong Zhuang, Tao Zhang, Santosh Pande, HIDE: An Infrastructure for Efficiently protecting information
leakage on the address bus, proc. Architectural Support for Programming Languages and Operating Systems,
pp. 82–84, ACM, 2004

34

http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
http://www.cl.cam.ac.uk/research/srg/netos/xen
http://www.cl.cam.ac.uk/research/srg/netos/xen
http://www.vmware.com
http://www.vmware.com

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Related work

	2 Preliminaries
	2.1 Memory and cache structure
	2.2 Memory access in AES implementations
	2.3 Notation

	3 Synchronous known-data attacks
	3.1 Overview
	3.2 One-round attack
	3.3 Two-round attack
	3.4 Measurement via Evict+Time
	3.5 Measurement via Prime+Probe
	3.6 Practical complications
	3.7 Experimental results
	3.8 Variants and extensions

	4 Asynchronous attacks
	4.1 Overview
	4.2 One-Round Attack
	4.3 Measurements
	4.4 Experimental results
	4.5 Variants and extensions

	5 Countermeasures
	5.1 Avoiding memory accesses
	5.2 Alternative lookup tables
	5.3 Data-independent memory access pattern
	5.4 Application-specific algorithmic masking
	5.5 Cache state normalization and process blocking
	5.6 Disabling cache sharing
	5.7 Static or disabled Cache
	5.8 Dynamic table storage
	5.9 Hiding the timing
	5.10 Selective round protection
	5.11 Operating system support
	5.12 Hardware AES support

	6 Conclusions and implications
	6.1 Summary of results
	6.2 Vulnerable cryptographic primitives
	6.3 Vulnerable systems
	6.4 Mitigation
	6.5 Follow-up works

	References

